Indicative fire test on a pilot-scale timber framed floor/ceiling system lined with fibre cement sheet coated with intumescent paint

Test Report

Author:	Peter Gordon
Report number:	FSP 1889
Date:	1 November 2018
Client:	Tech Coatings (NZ)

Commercial-in-confidence

Inquiries should be address to:

Fire Testing and Assessments	Author	The Client
NATA Registered Laboratory	Infrastructure Technologies	Tech Coatings NZ Limited
14 Julius Avenue	14 Julius Avenue	12 Tokomaru Street
North Ryde, NSW 2113	North Ryde, NSW 2113	Welbourn 4312
Australia	Australia	New Zealand
Telephone +61294905444	Telephone +61294905500	Telephone +64 21483444

Report Status and Revision History:

| VERSION | STATUS | DATE | DISTRIBUTION | ISSUE NUMBER |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Revision A | Draft for review | $23 / 04 / 2018$ | CSIRO | FSP 1889 |
| Revision B | Final | $08 / 05 / 2018$ | CSIRO/CLIENT | FSP 1889 |
| Revision C | Updated | $10 / 10 / 2018$ | CSIRO / CLIENT | FSP 1889 |
| Revision D | Updated | $1 / 11 / 2018$ | CSIRO / CLIENT | FSP 1889 |

Report Authorization:

AUTHOR	REVIEWED BY	Chris Wojcik
Peter Gordon	AUTHORISED BY	
10 October 2018	10 October 2018	10 October 2018

Use of this Report

Use of Reports - Testing

This report is subject to binding obligations under which it was prepared. In particular, the Report must not be used:

- as a means of endorsement; or
- in a company prospectus or notification to a Stock Exchange document for capital raising, without the prior written consent of CSIRO.

The Report may be published verbatim and in full, provided that a statement is included on the publication that it is a copy of the Report issued by CSIRO.

Excerpts of the Report may not be published.

Use of Reports - Consultancy

This report is subject to binding obligations under which it was prepared. In particular, the Report may only be used for the following purposes:

- the information in the Report may be used by the party that commissioned the Report for its internal business operations (but not licensing to third parties);
- the report may be copied for distribution within the organisation that commissioned the Report;
- copies of the Report (or extracts of the Report) may be distributed to contractors and agents of the organisation that commissioned the Report who have a need for the Report for its internal business operations. Any extracts of the Report distributed for this purpose must clearly note that the extract is part of a larger Report held by the organisation that commissioned the Report and which has been prepared by CSIRO.

The name, trade mark or logo of the CSIRO must not be used without the prior written consent of CSIRO.

The Report must not be used as a means of endorsement without the prior written consent of CSIRO.

Copyright and disclaimer

© 2018 CSIRO To the extent permitted by law, all rights are reserved and no part of this publication covered by copyright may be reproduced or copied in any form or by any means except with the written permission of CSIRO.

Important disclaimer

CSIRO advises that the information contained in this publication comprises general statements based on scientific research. The reader is advised and needs to be aware that such information may be incomplete or unable to be used in any specific situation. No reliance or actions must therefore be made on that information without seeking prior expert professional, scientific and technical advice. To the extent permitted by law, CSIRO (including its employees and consultants) excludes all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this publication (in part or in whole) and any information or material contained in it.

Contents

1 Introduction 5
1.1 Identification of specimen 5
1.2 Purpose of the test 5
1.3 Sponsor 5
1.4 Manufacturer 5
1.5 Test standard 6
1.6 Departure from the standard 6
1.7 Test number 6
1.8 Test date 6
2 Description of specimen 6
2.1 General 6
2.2 Dimensions 6
2.3 Orientation 6
2.4 Conditioning 7
3 Documentation 7
4 Equipment 7
4.1 Furnace 7
4.2 Temperature 7
4.3 Measurement system 8
5 Ambient temperature 8
6 Termination of test 8
7 Test results 8
7.1 Critical observations 8
7.2 Furnace temperature 8
7.3 Furnace severity 8
7.4 Specimen temperature 9
8 Tested by 9
Appendices 10
Appendix A - Measurement location 10
Appendix B - Photographs 11
Appendix C - Furnace Temperature 16
Appendix D - Drawings and Specification Sheets 21
References 25

Indicative fire test on a pilot scale timber framed floor/ceiling system lined with fibre cement sheet coated with intumescent paint

 Sponsored Investigation No. FSP 1889

 Sponsored Investigation No. FSP 1889}

1 Introduction

1.1 Identification of specimen

The sponsor identified the specimen as a $1200-\mathrm{mm}$ long $\times 1200-\mathrm{mm}$ wide $\times 216-\mathrm{mm}$ thick, timber framed midfloor/ceiling system with 19-mm thick CCA structural ply flooring board, line on the exposed face with a single layer of $6-\mathrm{mm}$ thick fibre cement sheet coated on the underside with $1036-\mu \mathrm{m}$ of FBL-100 intumescent paint.

1.2 Purpose of the test

To establish the likely performance of the pilot scale floor system using intumescent paint when exposed to the heating conditions specified in AS 1530.4-2014.

1.3 Sponsor

Tech Coatings NZ Limited
12 Tokomaru Street
Welbourn 4312
New Zealand

1.4 Manufacturer

International Coatings Group
757 SE 17th Street, Suite 846,
Fort Lauderdale, FL33316
United States of America

1.5 Test standard

Australian Standard 1530, Methods for fire tests on building materials, components and structures, Part 4-2014, Fire-resistance tests of elements of construction,

Section 4 - Floors, Roofs and Ceilings horizontal separating elements.

1.6 Departure from the standard

The pilot size of the specimen did not meet the size requirements as specified in Clause 2.9.2 of AS 1530.4-2014.

The indicative test was heated unloaded.

1.7 Test number

CSIRO Reference test number: FS 4741/4212

1.8 Test date

The fire test was conducted on 12 March 2018.

2 Description of specimen

2.1 General

The specimen comprised a $1200-\mathrm{mm}$ long $\times 1200-\mathrm{mm}$ wide $\times 216-\mathrm{mm}$ thick timber framed floor/ceiling system. The floor system comprised 190-mm high x $45-\mathrm{mm}$ wide MSG (Machine Stress Graded), H3 treated Radiata pine joists spaced at $600-\mathrm{mm}$ centres with one joist located in the centre of the frame. The floor consisted of a layer of 19-mm thick CCA Structural Plywood. The underside of the floor framing was lined with a single layer of 6-mm thick James Hardie Villaboard fibre cement sheet and coated with $1036-\mu \mathrm{m}$ dry film thickness of FBL 100 intumescent paint.

2.2 Dimensions

The overall dimension of the floor system was $1200-\mathrm{mm} \times 1200-\mathrm{mm} \times 216-\mathrm{mm}$ thick, to suit the opening in the specimen containing frame. An area measuring $1000-\mathrm{mm} \times 1000-\mathrm{mm}$ was exposed to the heating conditions of AS 1530.3-2014.

2.3 Orientation

The floor system was placed horizontally on top of the furnace chamber, and subjected to fire exposure from the underside.

2.4 Conditioning

The specimen floor was constructed on 6 March 2018 and was stored under laboratory conditions until the day of the test.

2.5 Selection, construction and installation of the specimen and the supporting construction

Floor construction of the specimen frame was organised by CSIRO, the painting of the plasterboard was organised by the test sponsor. CSIRO was not involved in the selection of the materials.

3 Documentation

The following documents were supplied or referenced by the sponsor as a complete description of the specimen and should be read in conjunction with this report:

- Drawing TC 0005, MID FLOOR PLAN 6-mm VILLABOARD CEILING (FC), Dated 08/02/2018, by Tech Coatings.
- CSIRO Test Specification, TC 0005 Mid floor 6-mm Villaboard, Dated 30/1/2018, by Tech Coatings.

Confidential information about the test specimen has been submitted and is retained at CSIRO Infrastructure Technologies.

4 Equipment

4.1 Furnace

The furnace had a nominal opening of $1000-\mathrm{mm} \times 1000-\mathrm{mm}$ for attachment of vertical or horizontal specimens.

The furnace was lined with refractory bricks and materials with the thermal properties as specified in AS 1530.4-2014 and was heated by combustion of a mixture of natural gas and air.

4.2 Temperature

The temperature in the furnace chamber was measured by four type K, 3-mm diameter, and 310 stainless steel Mineral Insulated Metal Sheathed (MIMS) thermocouples. Each thermocouple was housed in high-nickel steel tubes opened at the exposed end.

The temperatures of the specimen were measured by glass-fibre insulated and sheathed K-type thermocouples with a wire diameter of $0.5-\mathrm{mm}$.

Location of the thermocouples on the unexposed face of the specimen and internally are described in Appendix A.

4.3 Measurement system

The primary measurement system comprised a multiple-channel data logger, scanning at one minute intervals during the test.

5 Ambient temperature

The temperature of the test area was $18^{\circ} \mathrm{C}$ at the commencement of the test.

6 Termination of test

The test was terminated at 121 minutes by the agreement with the sponsor.

7 Test results

7.1 Critical observations

The following observations were made during the indicative fire test:
Time Observation
66 minutes - Smoke emitted from the perimeter of the specimen.
90 minutes - Smoke is increasing from the perimeter of the specimen.
101 minutes - Smoke continues to increasing from the perimeter of the specimen.
121 minutes - Test terminated.

7.2 Furnace temperature

Figure 1 shows the standard curves of temperature versus time for heating the furnace chamber and the actual curves of average and maximum temperature versus time recorded during the heating period.

7.3 Furnace severity

Figure 2 shows the curve of furnace severity versus time during the heating period.

7.4 Specimen temperature

Figure 3 shows the curve of temperature versus time on the unexposed face.
Figure 4 shows the curve of temperature versus time of the internal thermocouples.
Figure 5 shows the curve of temperature versus time of the paint / Villaboard interface.

8 Tested by

Peter Gordon
Testing Officer

Appendices

Appendix A - Measurement location

Measurement Location		
Specimen	T/C Position	T/C designation
Internal Joist	Villaboard / Joist Interface 250-mm off	S1
	250-mm off centre 10-mm up from bottom in centre of joist	S2
	250-mm off centre 20-mm up from bottom in centre of joist	S3
	250-mm off centre 95-mm up from bottom on joist side	S4
	250-mm off centre 95-mm up from bottom 10-mm inside joist	S5
	Villaboard / Joist Interface 250-mm off centre	S6
	250-mm off centre 10-mm up from bottom in centre of joist	S7
	250-mm off centre 20-mm up from bottom in centre of joist	S8
	250-mm off centre 95-mm up from bottom on joist	S9
	250-mm off centre 95-mm up from bottom 10-mm inside joist	S10
Interface with intumescent paint / Villaboard	Quarter points	S11
	Quarter points	S12
	Quarter points	S13
	Quarter points	S14
Unexposed face	Quarter points on Plywood S/W	S15
	Quarter points on Plywood N/W	S16
	Quarter points on Plywood S/E	S17
	Quarter points on Plywood N/E	S18
Rover		S19
Ambient		S20

Appendix B - Photographs

PHOTOGRAPH 1 - EXPOSED FACE OF SPECIMEN PRIOR TO TESTING

PHOTOGRAPH 2 - UNEXPOSED FACE OF SPECIMEN PRIOR TO TESTING

PHOTOGRAPH 3 - SPECIMEN AFTER 30 MINUTES OF TESTING

PHOTOGRAPH 4 - SPECIMEN AFTER 60 MINUTES OF TESTING

PHOTOGRAPH 5 - SPECIMEN AFTER 90 MINUTES OF TESTING

PHOTOGRAPH 6 - SPECIMEN AFTER 120 MINUTES OF TESTING

PHOTOGRAPH 7 - UNEXPOSED FACE OF SPECIMEN AT THE CONCLUSION OF TESTING

PHOTOGRAPH 8 - VILLABOARD FROM THE EXPOSED FACE OF SPECIMEN AT CONCLUSION OF TESTING

PHOTOGRAPH 9 - EXPOSED FACE OF SPECIMEN AT CONCLUSION OF TESTING

PHOTOGRAPH 10 - EXPOSED FACE OF SPECIMEN AT CONCLUSION OF TESTING

Appendix C - Furnace Temperature

FIGURE 2 - FURNACE SEVERITY

FIGURE 3 - SPECIMEN TEMPERATURE - UNEXPOSED FACE

FIGURE 5 - SPECIMEN TEMPERATURE AT THE PAINT / VILLABOARD INTERFACE

Appendix D - Drawings and Specification Sheets

DRAWING NO. TC 0005, MID FLOOR PLAN 6-MM VILLABOARD CEILING (FC), DATED 8/02/2018, BY TECH COATINGS PTY LTD

CSIRO Test Specification

Test number: TC_0005

Tech Coatings test specification

Scope of Work

- The test specimen is 1200 mm long $\times 1200 \mathrm{~mm}$ wide $\times 216 \mathrm{~mm}$ thick, timber framed midfloor/ceiling system drawn \& constructed as per NZS 3603:1993, refer to TC_0005_SP4212_Pilot_6mm_Villaboard_Ceiling_Drawing.pdf
- The floor system is comprised of $190 \mathrm{~mm} \times 45 \mathrm{~mm}$ MSG H3 treated joists at 600 mm centres, tie off joists are $190 \mathrm{~mm} \times 45 \mathrm{~mm}$ MSG H3 treated timber joists, the floor lining is 19 mm CCA structural plywood and the underside of the mid-floor/ceiling is lined with a single layer of 6 mm James Hardie Villaboard, protected with a 1000μ coat of FBL-100 intumescent paint
Schedule of Materials
- 19 mm CCA Structural Plywood
- $50 \mathrm{~mm} \times 8 \mathrm{~g} 304$ Stainless steel countersunk screws
- $190 \mathrm{~mm} \times 45 \mathrm{~mm}$ MSG, H3 Treated Timber Joist
- $75 \mathrm{~mm} \times 3.06 \mathrm{~mm}$ D Head framing nails
- 6 mm James Hardie Villaboard
- $30 \mathrm{~mm} \times 7 \mathrm{~g}$ Villadrive Screws
- James Hardie Base coat, jointing compound
- FBL-100, Intumescent Coating

Construction

The floor/ceiling will be constructed with the following elements working from the floor down to the ceiling:

- Flooring - Will be 19 mm CCA Structural Plywood to be fixed using 50mm x $8 \mathrm{~g} \mathrm{304} \mathrm{S/S}$ countersunk screws. Perimeter fixing @150mm centres max. Mid sheet fixing @ 400mm centres max.
- Flooring Joists $-190 \mathrm{~mm} \times 45 \mathrm{~mm}$ MSG, H3 Treated Timber Joists spaced at 600 mm centres max.
- Tie off Joists - These will be $190 \times 45 \mathrm{~mm}$ MSG, H3 Treated timber joist fixed with $75 \mathrm{~mm} \times 3.06 \mathrm{MM}$ D Head framing nails.
- Ceiling - The ceiling will be lined with 6 mm James Hardie Villaboard.

Perimeter fixing $\quad 30 \mathrm{~mm} \times 7 \mathrm{~g}$ Villadrive screws @ 200 mm cntrs. Mid Sheet Fixing $30 \mathrm{~mm} \times 7 \mathrm{~g}$ Villadrive screws @ 300 mm cntrs.

$$
\text { TC_0005 - Mid-floor 6mm Villaboard Page } 2 \mid 3
$$

Paint Specification

Intumescent Coat
The surface must be prepared as per AS/NZS 2311:2017, section 3
The ceiling will be coated with FBL-100 Intumescent paint. Please refer to the Product Data Sheet.

The DFT required is 1000μ to be achieved with the application of $4 \times 400 \mu$ WFT coats. A WFT gauge is to be used to check the consistency of application. DFT readings are to be taken between coats. Final DFT will be determined by using a Defelsko PosiTector 200b Ultrasonic probe.

If you have any questions please contact
Shane Wyatt
Technical Director
TECH COATINGS
+64 21483444
shanew@techcoatings.co.nz

References

The following informative documents are referred to in this Report:

AS 1530.4-2014 Methods for fire tests on building materials, components and structures Part 4: Fire-resistance tests of elements of building construction.

CONTACT US
t 1300363400
+61395452176
e enquiries@csiro.au
w www.csiro.au

YOUR CSIRO

Australia is founding its future on science and innovation. Its national science agency, CSIRO, is a powerhouse of ideas, technologies and skills for building prosperity, growth, health and sustainability. It serves governments, industries, business and communities across the nation.

FOR FURTHER INFORMATION

Infrastructure Technologies

Brett Roddy
Team Leader, Fire Testing and Assessments
t +61 294905449
e brett.roddy@csiro.au
w www.csiro.au/Organisation-Structure/Divisions/CMSE/Infrastructure-
Technologies/Fire-safety.aspx

